4.3 Article

Bayesian statistical approaches to evaluating cognitive models

Journal

Publisher

WILEY
DOI: 10.1002/wcs.1458

Keywords

-

Funding

  1. NSF [SBE-1257098, SBE-1640681]
  2. NEI [R01 EY021833, T32-EY07135]
  3. Temporal Dynamics of Learning Center [NSF SMA-1041755]
  4. Vanderbilt Vision Research Center [NEI P30-EY008126]
  5. Vanderbilt University

Ask authors/readers for more resources

Cognitive models aim to explain complex human behavior in terms of hypothesized mechanisms of the mind. These mechanisms can be formalized in terms of mathematical structures containing parameters that are theoretically meaningful. For example, in the case of perceptual decision making, model parameters might correspond to theoretical constructs like response bias, evidence quality, response caution, and the like. Formal cognitive models go beyond verbal models in that cognitive mechanisms are instantiated in terms of mathematics and they go beyond statistical models in that cognitive model parameters are psychologically interpretable. We explore three key elements used to formally evaluate cognitive models: parameter estimation, model prediction, and model selection. We compare and contrast traditional approaches with Bayesian statistical approaches to performing each of these three elements. Traditional approaches rely on an array of seemingly ad hoc techniques, whereas Bayesian statistical approaches rely on a single, principled, internally consistent system. We illustrate the Bayesian statistical approach to evaluating cognitive models using a running example of the Linear Ballistic Accumulator model of decision making (Brown SD, Heathcote A. The simplest complete model of choice response time: linear ballistic accumulation. Cogn Psychol 2008, 57:153-178). WIREs Cogn Sci 2018, 9:e1458. doi: 10.1002/wcs.1458

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available