4.7 Article

Downwind evolution of the volatility and mixing state of near-road aerosols near a US interstate highway

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 18, Issue 3, Pages 2139-2154

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-18-2139-2018

Keywords

-

Funding

  1. Health Effects Institute (HEI) [RFA 13-1]

Ask authors/readers for more resources

We present spatial measurements of particle volatility and mixing state at a site near a North Carolina interstate highway (I-40) applying several heating (thermodenuder; TD) experimental approaches. Measurements were conducted in summer 2015 and winter 2016 in a roadside trailer (10m from road edge) and during downwind transects at different distances from the highway under favorable wind conditions using a mobile platform. Results show that the relative abundance of semi-volatile species (SVOCs) in ultrafine particles decreases with downwind distance, which is consistent with the dilution and mixing of traffic-sourced particles with background air and evaporation of semi-volatile species during downwind transport. An evaporation kinetics model was used to derive particle volatility distributions by fitting TD data. While the TD-derived distribution apportions about 20-30% of particle mass as semi-volatile (SVOCs; effective saturation concentration, C* >= 1 mu m(-3)) at 10m from the road edge, approximately 10% of particle mass is attributed to SVOCs at 220 m, showing that the particle-phase semi-volatile fraction decreases with downwind distance. The relative abundance of semi-volatile material in the particle phase increased during winter. Downwind spatial gradients of the less volatile particle fraction (that remaining after heating at 180 degrees C) were strongly correlated with black carbon (BC). BC size distribution and mixing state measured using a single-particle soot photometer (SP2) at the roadside trailer showed that a large fraction (70-80 %) of BC particles were externally mixed. Heating experiments with a volatility tandem differential mobility analyzer (V-TDMA) also showed that the nonvolatile fraction in roadside aerosols is mostly externally mixed. V-TDMA measurements at different dis-tances downwind from the highway indicate that the mixing state of roadside aerosols does not change significantly (e.g., BC mostly remains externally mixed) within a few hundred meters from the highway. Our analysis indicates that a superposition of volatility distributions measured in laboratory vehicle tests and of background aerosol can be used to represent the observed partitioning of near-road particles. The results from this study show that exposures and impacts of BC and semi-volatile organics-containing particles in a roadside microenvironment may differ across seasons and under changing ambient conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available