4.7 Article

Effects of stratospheric variability on El Nino teleconnections

Journal

ENVIRONMENTAL RESEARCH LETTERS
Volume 10, Issue 12, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1748-9326/10/12/124021

Keywords

El Nino teleconnections; stratospheric variability; sudden stratospheric warmings; quasi-biennial oscillation; El Nino; El Nino impact

Funding

  1. National Science Foundation
  2. Office of Polar Programs at the National Science Foundation
  3. Earth System Modeling program at the NOAA/Climate Program Office

Ask authors/readers for more resources

The effects of the tropical Pacific El Nino Southern Oscillation (ENSO) phenomenon are communicated to the rest of the globe via atmospheric teleconnections. Traditionally, ENSO teleconnections have been viewed as tropospheric phenomena, propagating to higher latitudes as Rossby waves. Recent studies, however, suggest an influence of the stratosphere on extra-tropical ENSO teleconnections. The stratosphere is highly variable: in the tropics, the primary mode of variability is the quasi-biennial oscillation (QBO), and in the extra-tropics sudden stratospheric warmings (SSWs) regularly perturb the mean state. Here, we conduct a 10-member ensemble of simulations with a stratosphere-resolving atmospheric general circulation model forced with the observed evolution of sea surface temperatures during 1952-2001 to examine the effects of the QBO and SSWs on the zonal-mean circulation and temperature response to El Nino, with a focus on the northern extra-tropics during winter. We find that SSWs have a larger impact than the QBO on the composite El Nino responses. During El Nino winters with SSWs, the polar stratosphere shows positive temperature anomalies that propagate downward to the surface where they are associated with increased sea-level pressure over the Arctic. During El Nino winters without SSWs, the stratosphere and upper troposphere show negative temperature anomalies but these do not reach the surface. The QBO modulates the El Nino teleconnection primarily in winters without SSWs: the negative temperature anomalies in the polar stratosphere and upper troposphere are twice as large during QBO West compared to QBO East years. In addition, El Nino winters that coincide with the QBO West phase show stronger positive sea-level pressure anomalies over the eastern Atlantic and Northern Europe than those in the QBO East phase. The results imply that the stratosphere imparts considerable variability to ENSO teleconnections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available