4.6 Article

Revisiting the hybrid quantum Monte Carlo method for Hubbard and electron-phonon models

Journal

PHYSICAL REVIEW B
Volume 97, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.97.085144

Keywords

-

Funding

  1. Gauss Centre for Supercomputing e.V.
  2. DFG [SFB 1170, C01, Z03]

Ask authors/readers for more resources

A unique feature of the hybrid quantum Monte Carlo (HQMC) method is the potential to simulate negative sign free lattice fermion models with subcubic scaling in system size. Here we will revisit the algorithm for various models. We will showthat for the Hubbard model the HQMC suffers from ergodicity issues and unbounded forces in the effective action. Solutions to these issues can be found in terms of a complexification of the auxiliary fields. This implementation of the HQMC that does not attempt to regularize the fermionic matrix so as to circumvent the aforementioned singularities does not outperform single spin flip determinantal methods with cubic scaling. On the other hand we will argue that there is a set of models for which the HQMC is very efficient. This class is characterized by effective actions free of singularities. Using the Majorana representation, we show that models such as the Su-Schrieffer-Heeger Hamiltonian at half filling and on a bipartite lattice belong to this class. For this specific model subcubic scaling is achieved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available