4.7 Article

Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

Journal

ENVIRONMENTAL RESEARCH LETTERS
Volume 10, Issue 10, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1748-9326/10/10/105008

Keywords

adaptation pathways; adaptation tipping points; serious game; rainfall generator; signposts; adaptive water management; deep uncertainty

Ask authors/readers for more resources

Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for local or regional decision making on climate adaptation are static 'endpoint' projections. This paper describes the development and use of transient (time-dependent) scenarios by means of a case on water management in the Netherlands. Relevant boundary conditions (sea level, precipitation and evaporation) were constructed by generating an ensemble of synthetic time-series with a rainfall generator and a transient delta change method. Climate change impacted river flows were then generated with a hydrological simulation model for the Rhine basin. The transient scenarios were applied in model simulations and game experiments. We argue that there are at least three important assets of using transient scenarios for supporting robust climate adaptation: (1) raise awareness about (a) the implications of climate variability and climate change for decision making and (b) the difficulty of finding proof of climate change in relevant variables for water management; (2) assessment of when to adapt by identifying adaptation tipping points which can then be used to explore adaptation pathways, and (3) identification of triggers for climate adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available