4.7 Article

Multi-objective optimization methodology for net zero energy buildings

Journal

JOURNAL OF BUILDING ENGINEERING
Volume 16, Issue -, Pages 57-71

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jobe.2017.12.003

Keywords

Net zero energy building; Optimization; Decision making; Climate; Passive measures; Life cycle cost; Renewable energy systems

Funding

  1. Lebanese University
  2. University of Nice Sophia Antipolis

Ask authors/readers for more resources

The challenge in Net Zero Energy Building (NZEB) design is to find the best combination of design strategies that will face the energy performance problems of a particular building. This paper presents a methodology for the simulation-based multi-criteria optimization of NZEBs. Its main features include four steps: building simulation, optimization process, multi-criteria decision making (MCDM) and testing solution's robustness. The methodology is applied to investigate the cost-effectiveness potential for optimizing the design of NZEBs in different case studies taken as diverse climatic zones in Lebanon and France. The investigated design parameters include: external walls and roof insulation thickness, windows glazing type, cooling and heating set points, and window to wall ratio. Furthermore, the inspected RE systems include: solar domestic hot water (SDHW) and photovoltaic (PV) array. The proposed methodology is a useful tool to enhance NZEBs design and to facilitate decision making in early phases of building design. Specifically, the non-dominated sorting genetic algorithm (NSGA-II) is chosen in order to minimize thermal, electrical demands and life cycle cost (LCC) while reaching the net zero energy balance; thus getting the Pareto-front. A ranking decision making technique Elimination and Choice Expressing the Reality (ELECTRE III) is applied to the Pareto-front so as to obtain one optimal solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available