4.3 Article

Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde

Journal

RESEARCH IN MICROBIOLOGY
Volume 168, Issue 6, Pages 536-546

Publisher

ELSEVIER
DOI: 10.1016/j.resmic.2017.03.001

Keywords

Amino acids; Branched chain; Food preservatives; Oils; Volatile; Antimicrobial agents

Categories

Funding

  1. Research Foundation-Flanders (FWO) [G.0C77.14N]
  2. KU Leuven Research Fund [METH/14/03]

Ask authors/readers for more resources

trans-Cinnamaldehyde, the major compound of cinnamon essential oil, is a potentially interesting natural antimicrobial food preservative. Although a number of studies have addressed its mode of action, the factors that determine bacterial sensitivity or tolerance to trans-cinnamaldehyde are poorly understood. We report the detailed characterization of a Listeria monocytogenes Scott A trans-cinnamaldehyde hypersensitive mutant defective in IlvE, which catalyzes the reversible transamination of branched-chain amino acids to the corresponding shortchain alpha-ketoacids. This mutant showed an 8.4 fold extended lag phase during growth in sublethal concentrations (4 mM), and faster inactivation in lethal concentrations of trans-cinnamaldehyde (6 mM). trans-Cinnamaldehyde hypersensitivity could be corrected by genetic complementation with the ilvE gene and supplementation with branched-chain alpha-ketoacids. Whole-cell fatty acid analyses revealed an almost complete loss of anteiso branched-chain fatty acids (BCFAs), which was compensated by elevated levels of unbranched saturated fatty acids and iso-BCFAs. Sub-inhibitory concentrations of trans-cinnamaldehyde induced membrane fatty acid adaptations predicted to reduce membrane fluidity, possibly as a response to counteract the membrane fluidizing effect of trans-cinnamaldehyde. These results demonstrate the role of IlvE in BCFA production and the role of membrane composition as an important determinant of trans-cinnamaldehyde sensitivity in L. monocytogenes. (C) 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available