4.7 Article

The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 189, Issue -, Pages 180-193

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2016.11.026

Keywords

-

Funding

  1. ESA project Passive Microwave Soil Moisture Data Fusion Study [4000110112]
  2. ESAs Climate Change Initiative Program Phase 2 of the ESA Climate Change Initiative - Soil Moisture ECV [4000112226/14/I-NB]
  3. European Union [603608]

Ask authors/readers for more resources

This paper evaluates a methodology to integrate surface soil moisture retrievals from SMOS and AMSR-E into a single, consistent dataset retrieved by the Land Parameter Retrieval Model (LPRM). In a first step, the SMOS LPRM soil moisture retrievals were used as the baseline for optimizing the internal parameterization (i.e. surface roughness and single scattering albedo) of the AMSR-E LPRM retrievals. Secondly, to overcome the uniqueness of these datasets a linear scaling approach was applied resulting in a consistent soil moisture dataset. The new parameter set from the first step is similar for the two (low) frequencies of AMSR-E (i.e. C-and X-band) further improving their inter-comparability for both soil moisture and vegetation optical depth. Soil moisture retrievals from these AMSR-E frequencies were globally merged based on the availability of brightness temperatures that are free from RFI contamination (resulting in AMSR-E LPRMN). This new product was evaluated against both the SMOS LPRM product in the overlapping period (July2010 to October 2011), as well as the standard, publicly available AMSR-E LPRM dataset (AMSR-E LPRMv3) for an almost 9 year period (January 2003 to October 2011). For the overlapping period, the AMSR-E and SMOS LPRM products show high temporal correlation coefficients (0.60 < R< 0.90) and low root mean square errors (rmse < 0.04 m(3) m(-3)) for NDVI values up to 0.60. Their agreement tends to drop over the well-known challenging areas such as the arctic region and tropical rainforest. A detailed evaluation over in situ sites from 5 in situ networks worldwide showed that AMSR-E LPRMN often outperforms SMOS LPRM in sparsely vegetated areas, with generally higher correlation coefficients in areas with NDVI <03, and in general a lower unbiased rmse (ubrmse). In line with theoretical expectations, SMOS LPRM outperforms the AMSR-E LPRM product over the more densely vegetated areas. The newly developed AMSR-E LPRMN product was also compared against AMSR-E LPRMv3, revealing a significant increase (from 0.48 to 0.55) in temporal correlation coefficient over 16 in situ networks. This finding was confirmed through a large scale (50 degrees N -50 degrees S) precipitation based verification technique, the so-called R-value, which shows a superior performance of the newly developed AMSR-E LPRMN product. Additionally, the linear scaling of AMSR-E LPRMN to the SMOS LPRM leads to further reducing the ubrmse from 0.09 to 0.06 m(3) m(-3) and the average bias from 0.14 to 0.00 m(3) m(-3) over these stations. The AMSR-E LPRMN was furthermore compared against the top layer of two re-analysis models (i.e. from the Modern-Era Retrospective analysis for Research and Applications-Land and ERA-Interim/Land models) generally demonstrating increased correlation coefficients and reduced ubrmse with the exception of the challenging areas. As a result, this study shows the significant potential of SMOS LPRM to be a successful integrator to build a long term soil moisture record based on multiple passive microwave sensors. (C) 2016 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available