4.7 Article

Surface winds off Peru-Chile: Observing closer to the coast from radar altimetry

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 191, Issue -, Pages 179-196

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2017.01.010

Keywords

Satellite altimetry; Peru-Chile upwelling system; Coastal surface winds; Wind drop-off

Funding

  1. FONDECYT [1140845, 1151185]
  2. Chilean Millenium Initiative [NC 120030]
  3. Postdoctoral FONDECYT 586 [3130671]
  4. CNES OSTST

Ask authors/readers for more resources

The near-shore surface mesoscale atmospheric circulation in the upwelling systems off Peru and Chile is influential on the Sea Surface Temperature through Ekman transport and pumping. There has been a debate whether or not the so-called wind drop-off, that is a shoreward decrease of the surface wind speed near the coast, can act as an effective forcing of upwelling through Ekman pumping. Although the wind drop-off has been simulated by high-resolution atmospheric models, it has not been well documented due to uncertainties in the scatterometry-derived wind estimates associated with land contamination. Here we use the along-track altimetry-derived surface wind speed data from ENVISAT, Jason-1, Jason-2, and SARAL satellites, to document the spatial variability of the mean wind drop-off near the coast as estimated from the inversion of the radar backscattering coefficient. The data are first calibrated so as to fit with the scatterometer observations of previous and current satellite missions (QuikSCAT, ASCAT). The calibrated data are then analyzed near the coast and a wind drop-off scale is estimated. The results indicate that the wind drop-off takes place all along the coast, though with a significant alongshore variability in its magnitude. Differences between products are shown to be related both to the differences in repeat cycle between the different altimetry missions and to the peculiarities of the coastline shape at the coastal latitudes of the incident tracks. The relative contribution of Ekman pumping and Ekman transport to the total transport is also estimated indicating a comparable contribution off Chile while transport associated to Ekman pumping is on average-1.4 larger than Ekman transport off Peru. Despite the aliasing effect associated with the weak repetitivity of the satellite orbit and the high frequency variability of the winds in this region, the analysis suggests that the seasonal cycle of the surface winds near the coast could be resolved at least off Peru. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available