4.7 Article

Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 199, Issue -, Pages 415-426

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2017.07.015

Keywords

Crops; Remote sensing; Multi-temporal Sentinel-1 data; Optical data

Funding

  1. Agence de l'Environnement et de la Maitrise de l'Energie (ADEME) through the CiCC project [13-60-00095]
  2. CNRS-INSU
  3. ICOS-France
  4. European Commission [730074]

Ask authors/readers for more resources

Crop monitoring information is essential for food security and to improve our understanding of the role of agriculture on climate change, among others. Remotely sensing optical and radar data can help to map crop types and to estimate biophysical parameters, especially with the availability of an unprecedented amount of free Sentinel data within the Copernicus programme. These datasets, whose continuity is guaranteed up to decades, offer a unique opportunity to monitor crops systematically every 5 to 10 days. Before developing operational monitoring methods, it is important to understand the temporal variations of the remote sensing signal of different crop types in a given region. In this study, we analyse the temporal trajectory of remote sensing data for a variety of winter and summer crops that are widely cultivated in the world (wheat, rapeseed, maize, soybean and sunflower). The test region is in southwest France, where Sentinel-1 data have been acquired since 2014. Because Sentinel -2 data were not available for this study, optical satellites similar to Sentinel-2 are used, mainly to derive NDVI, for a comparison between the temporal behaviors with radar data. The SAR backscatter and NDVI temporal profiles of fields with varied management practices and environmental conditions are interpreted physically. Key findings from this analysis, leading to possible applications of Sentinel-1 data, with or without the conjunction of Sentinel-2, are then described. This study points out the interest of SAR data and particularly the VH/VV ratio, which is poorly documented in previous studies. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available