3.8 Article

ANFIS-based PI controller for maximum power point tracking in PV systems

Journal

Publisher

INST ADVANCED SCIENCE EXTENSION
DOI: 10.21833/ijaas.2018.02.015

Keywords

Adaptive neuro-fuzzy inference system; Maximum power point; Fuzzy logic; Neural networks

Funding

  1. Academic Research Deanship at Hail University [0150440]

Ask authors/readers for more resources

This paper presents a maximum power point tracking (MPPT) control system which is designed to increase the energy generation efficiency of Photovoltaic (PV) arrays. Usually Maximum power point tracking control system uses dc-to-dc converters to compensate for the output voltage of the PV array in order to keep the voltage at the value, which maximizes the output power. The purpose of the work is to develop an adaptive neuro-fuzzy inference system (ANFIS)-based proportional integral controller. The operating temperature and level of irradiance constitute inputs for the ANFIS controller, allowing it to determine the maximum available power that the PV array possesses. The error between the reference power from the ANFIS controller and the measured voltage and current of the PV array enables the proportional integral controller to generate the duty cycle. It is shown that ANFIS-based PI controller gives better performance criteria, unlike conventional techniques which usually give associations at steady state operating conditions. Eventually, the proposed MPPT control system based on ANFIS could provide better results than conventional techniques in terms of performance, accuracy and stability. (c) 2017 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available