4.6 Article

Gastrodin and Isorhynchophylline Synergistically Inhibit MPP+-Induced Oxidative Stress in SH-SY5Y Cells by Targeting ERK1/2 and GSK-3β Pathways: Involvement of Nrf2 Nuclear Translocation

Journal

ACS CHEMICAL NEUROSCIENCE
Volume 9, Issue 3, Pages 482-493

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschemneuro.7b00247

Keywords

Gastrodin; isorhynchophylline; synergism; Parkinson's disease; nuclear factor E2-related factor 2

Funding

  1. National Natural Science Foundation of China [81373629]

Ask authors/readers for more resources

The pathogenesis of Parkinson's disease (PD) is multifactorial event. Combination therapies might be more effective in controlling the disease. Thus, the studies reported were designed to test the hypothesis that gastrodin (GAS)-induced de novo synthesis of nuclear factor E2-related factor 2 (Nrf2) and isorhynchophylline (IRN) inhibition of Nrf2 nuclear export contribute to their additive or synergistic neuroprotective effect. Here, we have demonstrated that the combination of GAS and IRN (GAS/IRN) protects SH-SYSY cells against 1-methyl-4-phenylpyridinium (MPP+) toxicity in a synergistic manner. Concomitantly, GAS/IRN led to a statistically significant reduction of oxidative stress, as assessed by reactive oxygen species (ROS) and lipid hydroperoxides (LPO), and enhancement of both glutathione (GSH) and thioredoxin (Trx) systems compared with treatment with either agent alone in MPP+-challenged SH-SY5Y cells. Interestingly, GAS but not IRN activated extracellular signal-regulated kinases 1 and 2 (ERK1/2), leading to a increase in de novo synthesis of Nrf2 and nuclear import of Nrf2. Simultaneously, IRN but not GAS suppressed both constitutive glycogen synthase kinase (GSK)-3 beta and Fyn activation, which inhibited nuclear export of Nrf2. Importantly, simultaneous inhibition of GSK-3 beta pathway by IRN and activation of ERK1/2 pathway by GAS synergistically induced accumulation of Nrf2 in the nucleus in SH-SY5Y cells challenged with MPP+. Furthermore, the activation of the ERK1/2 pathway and inhibition of GSK-3 beta pathway by GAS/IRN are mediated by independent mechanisms. Collectively, these novel findings suggest an in vitro model of synergism between IRN and GAS in the induction of neuroprotection warrant further investigations in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available