4.5 Article

The grin of Cheshire cat resurgence from supersymmetric localization

Journal

SCIPOST PHYSICS
Volume 4, Issue 2, Pages -

Publisher

SCIPOST FOUNDATION
DOI: 10.21468/SciPostPhys.4.2.012

Keywords

-

Funding

  1. STFC [ST/P000371/1] Funding Source: UKRI

Ask authors/readers for more resources

First we compute the S-2 partition function of the supersymmetric CPN-1 model via localization and as a check we show that the chiral ring structure can be correctly reproduced. For the CP1 case we provide a concrete realisation of this ring in terms of Bessel functions. We consider a weak coupling expansion in each topological sector and write it as a finite number of perturbative corrections plus an infinite series of instantonanti-instanton contributions. To be able to apply resurgent analysis we then consider a non-supersymmetric deformation of the localized model by introducing a small unbalance between the number of bosons and fermions. The perturbative expansion of the deformed model becomes asymptotic and we analyse it within the framework of resurgence theory. Although the perturbative series truncates when we send the deformation parameter to zero we can still reconstruct non-perturbative physics out of the perturbative data in a nice example of Cheshire cat resurgence in quantum field theory. We also show that the same type of resurgence takes place when we consider an analytic continuation in the number of chiral fields from N to r is an element of R. Although for generic real r supersymmetry is still formally preserved, we find that the perturbative expansion of the supersymmetric partition function becomes asymptotic so that we can use resurgent analysis and only at the end take the limit of integer r to recover the undeformed model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available