4.7 Article

Cast polyurethanes obtained from reactive recovered polyol intermediates via crude glycerine decomposition process

Journal

REACTIVE & FUNCTIONAL POLYMERS
Volume 119, Issue -, Pages 20-25

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.reactfunctpolym.2017.07.009

Keywords

Polyurethane elastomer; Chemical recycling; Crude glycerol; Thermal characterisation; Mechanical properties

Ask authors/readers for more resources

In this work, the possibility of applying intermediates from polyurethane waste recycling in polyurethane synthesis was presented. Polyurethanes were synthesised in a two-step method using a mixture of petrochemical polyol and glycerolysate, used as a reactive component, 4,4-diphenylmethane diisocyanate (MDI) and 1,4-buthanediol (BD). Glycerolysates were produced during decomposition of polyurethane elastomer by crude glycerine from biodiesel production. The glycerolysates were incorporated into polyurethane structure and co-created a soft segment with their functional groups. Chemical structure and properties of the cast polyurethanes were characterised by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and mechanical tests. Results showed that higher incorporation of glycerolysates shifts the glass transition to higher temperatures and the mechanical properties indicates that material exhibits more stiff structure. Prepared polyurethanes which contained glycerolysates have good and similar (in a small amount of glycerolysate) properties to the reference polyurethane which indicates the possibility of glycerolysate application as a polyol in the polyurethane synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available