4.7 Article

Ru/FeOx catalyst performance design: Highly dispersed Ru species for selective carbon dioxide hydrogenation

Journal

CHINESE JOURNAL OF CATALYSIS
Volume 39, Issue 1, Pages 157-166

Publisher

SCIENCE PRESS
DOI: 10.1016/S1872-2067(17)62967-X

Keywords

Highly dispersed Ru/FeOx catalyst; Temperature-programmed surface reaction; CO2 selective hydrogenation; Product selectivity; Hydrogen adsorption

Funding

  1. National Natural Science Foundation of China [21476145, 91645117]
  2. China Postdoctoral Science Foundation [2016M600221]

Ask authors/readers for more resources

A series of Ru/FeOx catalysts were synthesized for the selective hydrogenation of CO2 to CO. Detailed characterizations of the catalysts through X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and temperature-programmed techniques were performed to directly monitor the surface chemical properties and the catalytic performance to elucidate the reaction mechanism. Highly dispersed Ru species were observed on the surface of FeOx regardless of the initial Ru loading. Varying the Ru loading resulted in changes to the Ru coverage over the FeOx surface, which had a significant impact on the interaction between Ru and adsorbed H, and concomitantly, the H-2 activation capacity via the ability for H-2 dissociation. FeOx having 0.01% of Ru loading exhibited 100% selectivity toward CO resulting from the very strong interaction between Ru and adsorbed H, which limits the desorption of the activated H species and hinders over-reduction of CO to CH4. Further increasing the Ru loading of the catalysts to above 0.01% resulted in the adsorbed H to be easily dissociated, as a result of a weaker interaction with Ru, which allowed excessive CO reduction to produce CH4. Understanding how to selectively design the catalyst by tuning the initial loading of the active phase has broader implications on the design of supported metal catalysts toward preparing liquid fuels from CO2. (C) 2018, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available