4.5 Article

Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider

Journal

PHYSICAL REVIEW C
Volume 97, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.97.044912

Keywords

-

Funding

  1. BMWFW (Austria)
  2. FWF (Austria)
  3. FNRS (Belgium)
  4. FWO (Belgium)
  5. CNPq (Brazil)
  6. CAPES (Brazil)
  7. FAPERJ (Brazil)
  8. FAPESP (Brazil)
  9. MES (Bulgaria)
  10. CERN
  11. CAS (China)
  12. MoST (China)
  13. NSFC (China)
  14. COLCIENCIAS (Colombia)
  15. MSES (Croatia)
  16. CSF (Croatia)
  17. RPF (Cyprus)
  18. SENESCYT (Ecuador)
  19. MoER (Estonia)
  20. ERC IUT (Estonia)
  21. ERDF (Estonia)
  22. Academy of Finland (Finland)
  23. MEC (Finland)
  24. HIP (Finland)
  25. CEA (France)
  26. CNRS/IN2P3 (France)
  27. BMBF (Germany)
  28. DFG (Germany)
  29. HGF (Germany)
  30. GSRT (Greece)
  31. OTKA (Hungary)
  32. NIH (Hungary)
  33. DAE (India)
  34. DST (India)
  35. IPM (Iran)
  36. SFI (Ireland)
  37. INFN (Italy)
  38. MSIP (Republic of Korea)
  39. NRF (Republic of Korea)
  40. LAS (Lithuania)
  41. MOE (Malaysia)
  42. UM (Malaysia)
  43. BUAP (Mexico)
  44. CINVESTAV (Mexico)
  45. CONACYT (Mexico)
  46. LNS (Mexico)
  47. SEP (Mexico)
  48. UASLP-FAI (Mexico)
  49. MBIE (New Zealand)
  50. PAEC (Pakistan)
  51. MSHE (Poland)
  52. NSC (Poland)
  53. FCT (Portugal)
  54. JINR (Dubna)
  55. MON (Russia)
  56. RosAtom (Russia)
  57. RAS (Russia)
  58. RFBR (Russia)
  59. RAEP (Russia)
  60. MESTD (Serbia)
  61. SEIDI (Spain)
  62. CPAN (Spain)
  63. PCTI (Spain)
  64. FEDER (Spain)
  65. MST (Taipei)
  66. ThEP-Center (Thailand)
  67. IPST (Thailand)
  68. STAR (Thailand)
  69. NSTDA (Thailand)
  70. TUBITAK (Turkey)
  71. TAEK (Turkey)
  72. NASU (Ukraine)
  73. SFFR (Ukraine)
  74. STFC (United Kingdom)
  75. DOE (USA)
  76. NSF (USA)
  77. Marie-Curie program
  78. European Research Council
  79. European Union [675440]
  80. Leventis Foundation
  81. A. P. Sloan Foundation
  82. Alexander von Humboldt Foundation
  83. Belgian Federal Science Policy Office
  84. Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium)
  85. Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
  86. Ministry of Education, Youth and Sports (MEYS) of the Czech Republic
  87. Council of Science and Industrial Research, India
  88. HOMING PLUS program of the Foundation for Polish Science - European Union, Regional Development Fund
  89. Ministry of Science and Higher Education
  90. National Science Center (Poland) [2014/14/M/ST2/00428, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2015/19/B/ST2/02861, 2012/07/E/ST2/01406]
  91. National Priorities Research Program by Qatar National Research Fund
  92. Programa Clarin-COFUND del Principado de Asturias
  93. Thalis program - EU-ESF
  94. Aristeia program - EU-ESF
  95. Greek NSRF
  96. Rachadapisek Sompot Fund
  97. Chulalongkorn University
  98. Chulalongkorn Academic into its 2nd Century Project Advancement Project (Thailand)
  99. Welch Foundation [C-1845]
  100. Direct For Mathematical & Physical Scien
  101. Division Of Physics [1151640, 1506130] Funding Source: National Science Foundation
  102. Direct For Mathematical & Physical Scien
  103. Division Of Physics [1606321, 1508869, 1506168] Funding Source: National Science Foundation
  104. STFC [1707996, ST/N000242/1, 1708249] Funding Source: UKRI

Ask authors/readers for more resources

Charge-dependent azimuthal correlations of same-and opposite-sign pairs with respect to the second-and third-order event planes have been measured in pPb collisions at root s(NN) = 8.16 TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three-and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (p(T)) difference, and the p(T) average of same-and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlators with respect to the second-and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v(2)-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v(2)-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available