4.6 Article

Tunable ferroelectricity and anisotropic electric transport in monolayer β-GeSe

Journal

PHYSICAL REVIEW B
Volume 97, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.97.144104

Keywords

-

Funding

  1. MOST Project of China [2014CB920903]
  2. NSF of China [11574029, 11734003]
  3. National Key R&D Program of China [2016YFA0300600]
  4. Singapore Ministry of Education Academic Research Fund Tier 1 [SUTD-T1-2015004]

Ask authors/readers for more resources

Low-dimensional ferroelectricity has attracted tremendous attention due to its huge potential in device applications. Here, based on first-principles calculations, we predict the existence of spontaneous in-plane electrical polarization and ferroelectricity in monolayer beta-GeSe, a polymorph of GeSe with a boat conformation newly synthesized in experiment. The magnitude of the polarization is about 0.16nC / m, which is comparable to that of monolayer SnTe studied in recent experiment, and the intrinsic Curie temperature is estimated to be above 200 K. Interestingly, owing to its puckered structure, the physical properties of beta-GeSe can be easily controlled by strain. The Curie temperature can be raised above room temperature by applying a 1% tensile strain, and the magnitude of polarization can be largely increased by strains in either the armchair or zigzag direction. Furthermore, we find that for the case with electron doping, applying strain can readily tune the anisotropic electric transport with the preferred conducting direction rotated by 90 degrees, which is connected to a strain-induced Lifshitz transition. The ratio between the effective masses along the two in-plane directions can undergo a dramatic change of two orders of magnitude even by a 2% strain. Our result reveals monolayer beta-GeSe is a promising platform for exploring ferroelectricity in two dimensions and for nanoscale mechanoelectronic device applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available