4.2 Article

Multiple Effects of Environmental Factors on Algal Growth and Nutrient Thresholds for Harmful Algal Blooms: Application of Response Surface Methodology

Journal

ENVIRONMENTAL MODELING & ASSESSMENT
Volume 21, Issue 2, Pages 247-259

Publisher

SPRINGER
DOI: 10.1007/s10666-015-9481-3

Keywords

Harmful algal blooms; Environmental factors; Response surface methodology; Central composite design; Optimum TN/TP ratio; Nutrient thresholds

Ask authors/readers for more resources

Systematic understanding of the co-effects of environmental factors on phytoplankton proliferation can enable more effective control of harmful algal blooms in eutrophic lakes and reservoirs. A batch of statistically designed experiments using response surface methodology was recently conducted on mixed algae samples collected from Changtan Reservoir. The central composite designed response surface model was established to evaluate multiple effects of various physical and chemical factors (total nitrogen, total phosphorus, temperature, and light intensity) on algal density and chlorophyll a content. Analysis of variance indicated an excellent correlation between modeling results and experimental responses. Among the selected environmental variables, promotion of the interactive effects of nitrogen and phosphorus together with the optimum total nitrogen/phosphorus mass ratio (between 7.9 and 10.1) was determined to be the most significant stimulating parameter associated with algal blooming development dominated by non-nitrogen-fixing species. The favorable effects of strong illumination were shown to be greater than those of high temperature. The border values of total nitrogen and phosphorus concentrations leading to a critical value of algal density under different water temperatures and light intensities could be predicted as nutrient loading thresholds for harmful algal blooms by our second-order polynomial regression model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available