4.6 Article

Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 18, Issue 1, Pages 159-173

Publisher

WILEY
DOI: 10.1111/1462-2920.12930

Keywords

-

Categories

Funding

  1. Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]
  2. NSERC Post-Doctoral Fellowship

Ask authors/readers for more resources

Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. We applied these methods to evaluate the inter-linked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla with no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin-Benson-Bassham, Wood-Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. This organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available