4.6 Article

Bulk Polymer-Derived Ceramic Composites of Graphene Oxide

Journal

ACS OMEGA
Volume 3, Issue 4, Pages 4006-4016

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.8b00492

Keywords

-

Funding

  1. Garmor, Inc.
  2. NASA through NASA Space Technology Research Fellowships (NSTRF) [NNX16AM88H]
  3. Materials Characterization Facility (MCF) at University of Central Florida
  4. NASA [NNX16AM88H, 899354] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Bulk polymer-derived ceramic (PDC) composites of SiCO with an embedded graphene network were produced using graphene-coated poly(vinyl alcohol) (PVA) foams as templates. The pyrolysis of green bodies containing cross-linked polysiloxane, PVA foams, and graphene oxide (GO) resulted in the decomposition of PVA foams, compression of GO layers, and formation of graphitic domains adjacent to GO within the SiCO composite, leading to SiCO composites with an embedded graphene network. The SiCO/GO composite, with about 1.5% GO in the ceramic matrix, offered an increase in the electrical conductivity by more than 4 orders of magnitude compared to that of pure SiCO ceramics. Additionally, the unique graphene network in the SiCO demonstrated a drop in the observed thermal conductivity of the composite (similar to 0.8 W m(-1) K-1). Young's modulus of the as-fabricated SiCO/GO composites was found to be around 210 MPa, which is notably higher than the reported values for similar composites fabricated from only ceramic precursors and PVA foams. The present approach demonstrates a facile and cost-effective method of producing bulk PDC composites with high electrical conductivity, good thermal stability, and low thermal conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available