4.4 Article

Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3' to 5' direction

Journal

PROTOPLASMA
Volume 255, Issue 2, Pages 669-684

Publisher

SPRINGER WIEN
DOI: 10.1007/s00709-017-1178-9

Keywords

AAA; ATPase; Helicase; Nucleic acid; Oryza sativa; OsRuvBL1a; Stress

Funding

  1. CSIR (Council of Scientific and Industrial Research)
  2. CSIR
  3. DBT (Department of Biotechnology)

Ask authors/readers for more resources

RuvB, a member of AAA+ (ATPases Associated with diverse cellular Activities) superfamily of proteins, is essential, highly conserved and multifunctional in nature as it is involved in DNA damage repair, mitotic assembly, switching of histone variants and assembly of telomerase core complex. RuvB family is widely studied in various systems such as Escherichia coli, yeast, human, Drosophila, Plasmodium falciparum and mouse, but not well studied in plants. We have studied the transcript level of rice homologue of RuvB gene (OsRuvBL1a) under various abiotic stress conditions, and the results suggest that it is upregulated under salinity, cold and heat stress. Therefore, the OsRuvBL1a protein was characterized using in silico and biochemical approaches. In silico study confirmed the presence of all the four characteristic motifs of AAA+ superfamily-Walker A, Walker B, Sensor I and Sensor II. Structurally, OsRuvBL1a is similar to RuvB1 from Chaetomium thermophilum. The purified recombinant OsRuvBL1a protein shows unique DNA-independent ATPase activity. Using site-directed mutagenesis, the importance of two conserved motifs (Walker B and Sensor I) in ATPase activity has been also reported with mutants D302N and N332H. The OsRuvBL1a protein unwinds the duplex DNA in the 3' to 5' direction. The presence of unique DNA-independent ATPase and DNA unwinding activities of OsRuvBL1a protein and upregulation of its transcript under abiotic stress conditions suggest its involvement in multiple cellular pathways. The first detailed characterization of plant RuvBL1a in this study may provide important contribution in exploiting the role of RuvB for developing the stress tolerant plants of agricultural importance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available