4.5 Article

Data-Independent Acquisition of HLA Class I Peptidomes on the Q Exactive Mass Spectrometer Platform

Journal

PROTEOMICS
Volume 17, Issue 19, Pages -

Publisher

WILEY
DOI: 10.1002/pmic.201700177

Keywords

antigens; biomarker; dia; HLA peptidomics; immunopeptidomics

Funding

  1. ETH Zurich
  2. Swiss National Science Foundation
  3. European Union [305309, 305608]
  4. European Research Council (ERC advanced grant ZAUBERKUGEL)

Ask authors/readers for more resources

The characterization of peptides presented by human leukocyte antigen (HLA) class I molecules is crucial for understanding immune processes, biomarker discovery, and the development of novel immunotherapies or vaccines. Mass spectrometry allows the direct identification of thousands of HLA-bound peptides from cell lines, blood, or tissue. In recent years, data-independent acquisition (DIA) mass spectrometry methods have evolved, promising to increase reproducibility and sensitivity over classical data-dependent acquisition (DDA) workflows. Here, we describe a DIA setup on the Q Exactive mass spectrometer, optimized regarding the unique properties of HLA class I peptides. The methodology enables sensitive and highly reproducible characterization of HLA peptidomes from individual cell lines. From up to 16 DDA analyses of 100 million human cells, more than 10000 peptides could be confidently identified, serving as basis for the generation of spectral libraries. This knowledge enabled the subsequent interrogation of DIA data, leading to the identification of peptide sets with >90% overlap between replicate samples, a prerequisite for the comparative study of closely related specimens. Furthermore, >3000 peptides could be identified from just one million cells after DIA analysis using a library generated from 300 million cells. The reduction in sample quantity and the high reproducibility of DIA-based HLA peptidome analysis should facilitate personalized medicine applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available