4.7 Article Proceedings Paper

Mitochondrial function in hypoxic ischemic injury and influence of aging

Journal

PROGRESS IN NEUROBIOLOGY
Volume 157, Issue -, Pages 92-116

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pneurobio.2016.06.006

Keywords

Ischemia/reperfusion; Hypoxia; Mitokine; Oxidative phosphorylation; Resveratrol, SIRT1, sirtuins; Mitoquinone; Tempol; Blood brain barrier; Tunneling nanotube; Nuclear-mitochondria cross-talk; Intermitochondrial signal propagation; Pseudohypoxia; Stroke, myocardial infarction; Alzheimer's disease; Parkinson's disease; Autophagy; Apoptosis

Categories

Funding

  1. National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD [R01 GM 101927]

Ask authors/readers for more resources

Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor lot (HIF-1 alpha), peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1 alpha), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available