4.7 Article

Experimental investigation on removal of heavy metals (Cu2+, Pb2+, and Zn2+) from aqueous solution by flax fibres

Journal

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
Volume 109, Issue -, Pages 639-647

Publisher

ELSEVIER
DOI: 10.1016/j.psep.2017.05.012

Keywords

Biomass; Heavy metals; Adsorption; Flax fibre; Runoff; Filtration

Funding

  1. Region Haute Normandie [R2015-CPER-0054A]
  2. Agglomeration community of Le Havre (CODAH)

Ask authors/readers for more resources

This study was carried out to examine the adsorption capacity of the flax fibres tows (FFT) adsorbent for the removal of heavy metals from aqueous solution using batch-adsorption techniques. The influence of contact time, pH, initial concentration and adsorbent quantity on the adsorption process was studied. Results revealed that adsorption rate increased rapidly, and the optimal removal efficiency was reached within 60 min. The adsorption isotherms could well be fitted by the Langmuir model. The RL value in the present investigation was less than one, indicating that the adsorption of the metal ions onto FFT is favourable. After treatment of the aqueous solution with FFT, the levels of heavy metals were observed to decrease with 97.4% for lead, 79% for copper, and 73.28% for zinc. These results indicate that the FFT can be used without specific treatment and are economically viable for the removal of metal ions. We are currently investigating the use of FFT as a bio-based material for the treatment of runoff water in urban zone. (C) 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available