4.7 Article

Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2016.2290

Keywords

phylogeny; Bayesian; parsimony; cladistics; morphology; palaeontology

Funding

  1. NERC [NE/L501554/1, NE/K500823/1, NE/L002434/1, NE/N003438/1, BB/N000919/1]
  2. University of Bristol (STaR scholarship)
  3. Royal Society Wolfson Research Merit Award
  4. John Templeton Foundation [43915]
  5. Biotechnology and Biological Sciences Research Council [BB/J00538X/1, 1563670, BB/N000919/1] Funding Source: researchfish
  6. Natural Environment Research Council [NE/P013678/1, 1241006, 1509059, 1374131, NE/N003438/1] Funding Source: researchfish
  7. BBSRC [BB/J00538X/1, BB/N000919/1] Funding Source: UKRI
  8. NERC [NE/N003438/1, NE/P013678/1] Funding Source: UKRI

Ask authors/readers for more resources

Morphological data provide the onlymeans of classifying the majority of life's history, but the choice between competing phylogenetic methods for the analysis of morphology is unclear. Traditionally, parsimony methods have been favoured but recent studies have shown that these approaches are less accurate than the Bayesian implementation of the Mk model. Here we expand on these findings in several ways: we assess the impact of tree shape andmaximum-likelihood estimation using the Mk model, as well as analysing data composed of both binary and multistate characters. We find that all methods struggle to correctly resolve deep clades within asymmetric trees, and when analysing small character matrices. The Bayesian Mk model is the most accurate method for estimating topology, but with lower resolution than other methods. Equal weights parsimony is more accurate than implied weights parsimony, and maximum-likelihood estimation using the Mk model is the least accurate method. We conclude that the Bayesian implementation of the Mk model should be the default method for phylogenetic estimation from phenotype datasets, and we explore the implications of our simulations in reanalysing several empirical morphological character matrices. A consequence of our finding is that high levels of resolution or the ability to classify species or groups with much confidence should not be expected when using small datasets. It is now necessary to depart from the traditional parsimony paradigms of constructing character matrices, towards datasets constructed explicitly for Bayesian methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available