4.8 Article

Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis

Journal

SMALL METHODS
Volume 2, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smtd.201800001

Keywords

adsorption; oxygen Evolution; spin State; spinel; strain

Funding

  1. Singapore Ministry of Education Academic Research Fund (AcRF) [RG111/15, RG10/16, MOE2016-T2-2-004]
  2. Agency for Science, Technology and Research of Singapore (A*Star) [M4070232.120]
  3. National Research Foundation (NRF), Prime Minister's Office, Singapore under Campus for Research Excellence and Technological Enterprise (CREATE)

Ask authors/readers for more resources

The electronic configuration is crucial in governing the binding strength of intermediates with catalysts, yet it is still challenging to control the catalysts' surface electronic spin state. Here, it is demonstrated that through surface metal-organic framework transformation followed by acid etching, the electronic spin state of surface Co3+ ions on spinel Co3O4 can be transformed from t(2g)(6) to the high electronic spin state of t(2g)(4)e(g)(2) by expanding the surface lattice constant, which significantly enhances the overlap of the e(g) orbital of cobalt with the oxygen adsorbates, and greatly improves the intermediates adsorption and thus the oxygen evolution reaction activity. The high electronic spin rich Co3O4 electrode exhibits an anodic current density of 10 mA cm(-2) at an overpotential of 280 mV. The finding offers a rational design strategy to manipulate the electronic spin state of catalyst and the hybridization of molecular orbitals in water electrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available