4.1 Article

Modeling of Oblique Load Test on Batter Pile Group Based on Support Vector Machines and Gaussian Regression

Journal

GEOTECHNICAL AND GEOLOGICAL ENGINEERING
Volume 36, Issue 3, Pages 1597-1607

Publisher

SPRINGER
DOI: 10.1007/s10706-017-0413-7

Keywords

Batter piles; Oblique load; Support vector regression; Gaussian process regression

Ask authors/readers for more resources

This paper evaluates the potential of two machine learning approaches i.e. Support vector machine (SVR) and Gaussian processes (GP) regression to model the oblique load capacity of batter pile groups. Linear regression was used to compare the performance of both SVR and GP based regression approaches to model the oblique load. Data set used consists of 147 samples obtained from the laboratory experiments. Out of the total sample size, 105 randomly selected samples were used for training whereas remaining 42 were used for testing the models. Input data set consist of angle of oblique load, pile length, sand relative density, number of vertical piles, number of batter piles where as oblique load was considered as output. Two kernel functions i.e. Polynomial and radial based kernel function were used with both SVR and GP regression. A comparison of results suggest that radial basis function based SVR approach works well in comparison to GP and linear regression based approaches and it could successfully be employed in modelling the oblique load capacity of batter pile groups. Parametric analysis and sensitivity analysis suggest that loading angle, pile length and number of batter pile were important in prediction of oblique load.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available