4.6 Article

GPU implementation of the 2D shallow water equations for the simulation of rainfall/runoff events

Journal

ENVIRONMENTAL EARTH SCIENCES
Volume 74, Issue 11, Pages 7295-7305

Publisher

SPRINGER
DOI: 10.1007/s12665-015-4215-z

Keywords

Shallow water equations; GPU; Unstructured meshes; Rainfall/runoff; Wet/dry cells

Ask authors/readers for more resources

Hydrological processes that occur in catchments usually require large space resolution over long periods of time. The advance on numerical methods as well as the increasing power of computation are making possible the physically based simulation of these phenomena. In particular, the 2D shallow water equations can be used to provide distributions of water depth and velocity fields. The necessity of spatial resolution involves the use of a large number of elements hence increasing the computational time when simulating realistic scenarios for a long time period. This work deals with an efficient GPU implementation of the 2D shallow water equations on unstructured meshes analysing the influence of the mesh resolution both on the computational performance and the quality of the results to simulate a rainfall/runoff event. The numerical method to solve them has been developed and compared following three programming approaches: the sequential implementation and its adaptation to the multi-thread and many-core architectures. The particular detail of the influence of the mesh ordering when using unstructured triangular meshes is paid attention in this work to find the best strategy to further reduce the computational time in the context of GPU simulation. The resulting approach is efficient and can become very useful in environmental simulation of hydrological processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available