4.8 Article

Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1619263114

Keywords

demethylase; biocatalysis; aryl metabolism; tetrahydrofolate; lignin

Funding

  1. National Institutes of Health
  2. National Institute of General Medical Sciences
  3. Howard Hughes Medical Institute
  4. Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]
  5. US Department of Energy, Office of Science and Office of Biological and Environmental Research [DE-AC02-05CH11231]

Ask authors/readers for more resources

Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, was previously available. LigM-catalyzed demethylation enables further modification and ring opening of the single-ring aromatics vanillate and 3-O-methylgallate, which are common byproducts of biofuel production. Here, we characterize aryl O-demethylation by LigM and report its 1.81-angstrom crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. These results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available