4.8 Article

Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1612561114

Keywords

allele-specific expression; fitness effects; purifying selection; positive selection; gene body methylation

Funding

  1. Swedish National Infrastructure for Computing (SNIC) through UPPMAX [b2012122, b2012190]
  2. Swedish Research Council
  3. Nilsson-Ehle Foundation
  4. Magnus Bergvall Foundation
  5. Erik Philip-Sorensen Foundation

Ask authors/readers for more resources

Understanding the causes of cis-regulatory variation is a long-standing aim in evolutionary biology. Although cis-regulatory variation has long been considered important for adaptation, we still have a limited understanding of the selective importance and genomic determinants of standing cis-regulatory variation. To address these questions, we studied the prevalence, genomic determinants, and selective forces shaping cis-regulatory variation in the outcrossing plant Capsella grandiflora. We first identified a set of 1,010 genes with common cis-regulatory variation using analyses of allele-specific expression (ASE). Population genomic analyses of whole-genome sequences from 32 individuals showed that genes with common cis-regulatory variation (i) are underweaker purifying selection and (ii) undergo less frequent positive selection than other genes. We further identified genomic determinants of cis-regulatory variation. Gene body methylation (gbM) was a major factor constraining cis-regulatory variation, whereas presence of nearby transposable elements (TEs) and tissue specificity of expression increased the odds of ASE. Our results suggest that most common cis-regulatory variation in C. grandiflora is under weak purifying selection, and that gene-specific functional constraints are more important for the maintenance of cis-regulatory variation than genome-scale variation in the intensity of selection. Our results agree with previous findings that suggest TE silencing affects nearby gene expression, and provide evidence for a link between gbM and cis-regulatory constraint, possibly reflecting greater dosage sensitivity of body-methylated genes. Given the extensive conservation of gbM in flowering plants, this suggests that gbM could be an important predictor of cis-regulatory variation in a wide range of plant species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available