4.8 Article

Robust mechanobiological behavior emerges in heterogeneous myosin systems

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1713219114

Keywords

myosin; biophysics; computational biology; complexity; robustness

Funding

  1. National Defense Science and Engineering Graduate Fellowship
  2. National Science Foundation [CMMI-1160840, CBET-1547810]
  3. Air Force Office of Scientific Research [FA9550-13-1-01 08]
  4. Office of Naval Research [N00014-17-1-2566]
  5. Carnegie Mellon University Bioengineered Organs Center

Ask authors/readers for more resources

Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with alpha-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available