4.8 Article

LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1618656114

Keywords

LGI1; Kv1 channels; D-type current; intrinsic excitability; epilepsy

Funding

  1. Agence Nationale de la Recherche [ANR-11-BSV4-0016]
  2. Fondation pour la Recherche Medicale
  3. Spanish Government (Ministerio de Economia y Competitividad) [SAF2015-65315-R]
  4. Agence Nationale de la Recherche (ANR) [ANR-11-BSV4-0016] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Autosomal dominant epilepsy with auditory features results from mutations in leucine-rich glioma-inactivated 1 (LGI1), a soluble glycoprotein secreted by neurons. Animal models of LGI1 depletion display spontaneous seizures, however, the function of LGI1 and the mechanisms by which deficiency leads to epilepsy are unknown. We investigated the effects of pure recombinant LGI1 and genetic depletion on intrinsic excitability, in the absence of synaptic input, in hippocampal CA3 neurons, a classical focus for epileptogenesis. Our data indicate that LGI1 is expressed at the axonal initial segment and regulates action potential firing by setting the density of the axonal Kv1.1 channels that underlie dendrotoxin-sensitive D-type potassium current. LGI1 deficiency incurs a >50% down-regulation of the expression of Kv1.1 and Kv1.2 via a posttranscriptional mechanism, resulting in a reduction in the capacity of axonal D-type current to limit glutamate release, thus contributing to epileptogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available