4.8 Article

Arresting dissolution by interfacial rheology design

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1705181114

Keywords

interfacial rheology; foams; yield stress; Ostwald ripening; emulsions

Funding

  1. SNSF [200021_165974]
  2. Nestle Research Center, Switzerland
  3. ERC

Ask authors/readers for more resources

A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an armored bubble to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air-water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of similar to 100 mu m bubbles coated with similar to 1 mu m particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available