4.8 Article

Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1613883114

Keywords

atmosphere; methane; megafauna; ice core; stable isotopes

Funding

  1. European Research Council (ERC) under the European Union [226172]
  2. Swiss National Science Foundation
  3. European Union
  4. European Research Council (ERC) [226172] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Atmospheric methane (CH4) records reconstructed from polar ice cores represent an integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here, we present dual stable isotopic methane records [delta(CH4)-C-13 and delta D(CH4)] from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation, and the water table as modulated by insolation, (local) sea level, and monsoon intensity. Based on our delta D(CH4) constraint, it seems that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 y compared with older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly caused by biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available