4.7 Article

Development of of a continuous motorcycle protection barrier system using computer simulation and full-scale crash testing

Journal

ACCIDENT ANALYSIS AND PREVENTION
Volume 116, Issue -, Pages 103-115

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.aap.2017.04.005

Keywords

Motorcyclist protection; Road restraint system; prEN 1317-8; Simulation; LS-DYNA; Safety

Ask authors/readers for more resources

Road restraint systems are designed to minimize the undesirable effects of roadside accidents and improve safety of road users. These systems are utilized at either side or median section of roads to contain and redirect errant vehicles. Although restraint systems are mainly designed against car, truck and bus impacts there is an increasing pressure by the motorcycle industry to incorporate motorcycle protection systems into these systems. In this paper development details of a new and versatile motorcycle barrier, CMPS, coupled with an existing vehicle barrier is presented. CMPS is intended to safely contain and redirect motorcyclists during a collision event. First, crash performance of CMPS design is evaluated by means of a three dimensional computer simulation program LS-DYNA. Then full-scale crash tests are used to verify the acceptability of CMPS design. Crash tests were performed at CSI proving ground facility using a motorcycle dummy in accordance with prEN 1317-8 specification. Full-scale crash test results show that CMPS is able to successfully contain and redirect dummy with minimal injury risk on the dummy. Damage on the barrier is also minimal proving the robustness of the CMPS design. Based on the test findings and further review by the authorities the implementation of CMPS was recommended at highway system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available