4.7 Article

A water-soluble phosphorescent conjugated polymer brush for tumor-targeted photodynamic therapy

Journal

POLYMER CHEMISTRY
Volume 8, Issue 38, Pages 5836-5844

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7py01248a

Keywords

-

Funding

  1. National Basic Research Program of China [2015CB932200, 2012CB723402]
  2. National Natural Science Foundation of China [21604042, 21674048, 61378081, 21574064]
  3. Synergetic Innovation Center for Organic Electronics and Information Displays, Jiangsu National Synergetic Innovation Center for Advanced Materials
  4. Natural Science Foundation of Jiangsu Province of China [BK20150843]
  5. NUPTSF [NY215017, NY211003, NY215080]

Ask authors/readers for more resources

Photodynamic therapy (PDT) has become a promising treatment approach against cancer due to low side effects and high therapeutic efficacy. However, the limitations of photosensitizers such as poor water solubility and lack of targeting ability hindered the clinical application of PDT. Here, we synthesized a phosphorescent conjugated polymer brush (PPF-Ir-g-(POEGMA-b-PGal)) in which a small photosensitizer iridium(III) complex was covalently attached to the conjugated backbone. A further hydrophilic polymer (POEGMA) and glycopolymer polygalactose (PGal), which has a specific binding ability with Hep G2 tumors, were grafted from the conjugated backbone via atom transfer radical polymerization (ATRP) and click reaction. The brush structure rendered PPF-Ir-g-(POEGMA-b-PGal) exhibited excellent water solubility. Meanwhile, PPF-Ir-g-(POEGMA-b-PGal) showed efficient properties of producing singlet oxygen. The photodynamic effect of the PPF-Ir-g-(POEGMA-b-PGal) photosensitizer was evaluated in Hep G2 cells via the MTT assay and flow cytometry and the results indicated that this photosensitizer can efficiently cause the death of cancer cells. Additionally, an antitumor study of PPF-Ir-g-(POEGMA-b-PGal) was conducted in vivo with Hep G2 tumor bearing nude mice, and the results show that the xenograft tumors were significantly inhibited. In summary, PPF-Ir-g-(POEGMA-b-PGal) exhibited fine water solubility and high PDT efficiency both in vitro and in vivo. Our study may further encourage the applications of conjugated polymer brush based photosensitizers for PDT in tumor treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available