4.5 Article

A computational algorithm to simulate disorganization of collagen network in injured articular cartilage

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 17, Issue 3, Pages 689-699

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-017-0986-3

Keywords

Articular cartilage; Finite element analysis; Collagen; Disorganization; Injury; Cartilage mechanics

Funding

  1. European Research Council under the European Union, ERC [281180]
  2. Academy of Finland [286526, 305138]
  3. Kuopio University Hospital [5041763]
  4. Sigrid Juselius Foundation
  5. Finnish Cultural Foundation North Savo regional fund [65142194]
  6. Alfred Kordelin Foundation [150465]
  7. Academy of Finland (AKA) [305138, 305138] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage-bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available