4.6 Article

Physiological stress and Hendra virus in flying-foxes (Pteropus spp.), Australia

Journal

PLOS ONE
Volume 12, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0182171

Keywords

-

Funding

  1. National Hendra Virus Research Program - Queensland, New South Wales
  2. Australian governments
  3. Australian Biosecurity Cooperative Research Centre for Emerging Infectious Diseases
  4. Australian Postgraduate Award program through the University of Queensland

Ask authors/readers for more resources

Pteropid bats (flying-foxes) are the natural reservoir of Hendra virus, an emergent paramyxovirus responsible for fatal infection in horses and humans in Australia. Pteropus alecto (the Black flying-fox) and the paraphyletic P. conspicillatus (the Spectacled flying-fox) appear to be the primary reservoir hosts. Previous studies have suggested that physiological and ecological factors may underpin infection dynamics in flying-foxes, and subsequent spillover to horses and in turn humans. We sought to examine temporal trends in urinary cortisol concentration in wild Australian flying-fox populations, to elucidate the putative relationship between Hendra virus infection and physiological stress. Pooled and individual urine samples were non-invasively collected from under roosting flying-foxes at two latitudinally disparate regions in the eastern Australian state of Queensland. Hendra virus detection, and (in individual urine samples) sex and species determination were PCR-based. Urinary cortisol measurement used a validated enzyme immunoassay. We found no direct correlation between increased urinary cortisol and Hendra virus excretion, but our findings do suggest a biologically plausible association between low winter temperatures and elevated cortisol levels in P. alecto in the lower latitude Southeast Queensland roosts. We hypothesize an indirect association between low winter temperatures and increased Hendra virus infection and excretion, mediated by the physiological cost of thermoregulation. Our findings and our approach are directly relevant to elaboration of the disease ecology of Nipah virus and other emerging henipaviruses in bats. More broadly, they inform investigation of emerging disease infection dynamics across the wildlife/livestock/human interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available