4.7 Article

Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production

Journal

MATERIALS CHEMISTRY FRONTIERS
Volume 2, Issue 7, Pages 1334-1342

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8qm00078f

Keywords

-

Funding

  1. Australian Research Council

Ask authors/readers for more resources

Porous nanomaterials are of great significance in enzyme immobilization by addressing the intrinsic issues of the native form of enzymes, such as low enzymatic activity and reusability. In this work, we report the successful fabrication of benzene-bridged dendritic mesoporous organosilica nanoparticles (BDMONs) with highly enriched benzene groups in the pore channel wall by a delayed addition method. The developed BDMONs were explored as nano-carriers for lipase immobilization. This platform exhibited a specific activity 6.5 times higher than that of the free enzyme with an excellent reusability, and enhanced thermal and pH stability. It is demonstrated that both the hydrophobic benzene groups and dendritic large-pores are responsible for the superior performance of the immobilized lipase in comparison with dendritic mesoporous silica nanoparticles, ethane-bridged dendritic mesoporous organosilica nanoparticles, and benzene-bridged MONs without large-pores. In particular, the designed nanobiocatalyst functions better than the free enzyme in the transesterification of corn oil to produce biodiesel, showing 93% conversion in the first cycle while retaining 94% of the initial catalytic activity after 5 cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available