4.1 Article

Residual Recurrent Neural Networks for Learning Sequential Representations

Journal

INFORMATION
Volume 9, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/info9030056

Keywords

recurrent neural networks; residual learning; shortcut connections; identity mapping

Funding

  1. National Natural Science Foundation of China [U1664264, U1509203, 61174114]

Ask authors/readers for more resources

Recurrent neural networks (RNN) are efficient in modeling sequences for generation and classification, but their training is obstructed by the vanishing and exploding gradient issues. In this paper, we reformulate the RNN unit to learn the residual functions with reference to the hidden state instead of conventional gated mechanisms such as long short-term memory (LSTM) and the gated recurrent unit (GRU). The residual structure has two main highlights: firstly, it solves the gradient vanishing and exploding issues for large time-distributed scales; secondly, the residual structure promotes the optimizations for backward updates. In the experiments, we apply language modeling, emotion classification and polyphonic modeling to evaluate our layer compared with LSTM and GRU layers. The results show that our layer gives state-of-the-art performance, outperforms LSTM and GRU layers in terms of speed, and supports an accuracy competitive with that of the other methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available