4.8 Article

Characterization of topology optimized Ti-6Al-4V components using electron beam powder bed fusion

Journal

ADDITIVE MANUFACTURING
Volume 19, Issue -, Pages 184-196

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addma.2017.12.001

Keywords

Additive manufacturing; Electron beam powder bed fusion; Ti64; Topology optimization

Funding

  1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]
  2. Department of Mechanical, Aerospace, and Biomedical Engineering of the Tickle College of Engineering
  3. UT-Battelle, LLC
  4. UT-ORNL Governor's Chair program for Advanced Manufacturing

Ask authors/readers for more resources

The use of manufacturing to generate topology optimized components shows promise for designers. However, designers who assume that additive manufacturing follows traditional manufacturing techniques may be misled due to the nuances in specific techniques. Since commercial topology optimization software tools are neither designed to consider orientation of the parts nor large variations in properties, the goal of this research is to evaluate the limitations of an existing commercial topology optimization software (i.e. Inspire (R)) using electron beam powder bed fusion (i.e. Arcarn (R)) to produce optimized Ti-6Al-4V alloy components. Emerging qualification tools from Oak Ridge National Laboratory including in-situ near-infrared imaging and log file data analysis were used to rationalize the final performance of components. While the weight savings of each optimized part exceeded the initial criteria, the failure loads and locations proved instrumental in providing insight to additive manufacturing with topology optimization. This research has shown the need for a comprehensive understanding of correlations between geometry, additive manufacturing processing conditions, defect generation, and microstructure for characterization of complex components such as those designed by topology optimization. (C) 2017 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available