4.6 Article

Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells

Journal

PLOS ONE
Volume 12, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0177824

Keywords

-

Funding

  1. American Heart Association [14BGIA18750004]
  2. National Science Foundation [CBET-1547838]
  3. National Institutes of Health [1R01HL130436-01]
  4. Texas Children's Hospital
  5. National Heart Lung and Blood Institute (NHLBI) [R01HL134510]
  6. Texas Hepatocellular Carcinoma Consortium (THCCC) [RP150587]
  7. Diana Helis Henry
  8. Adrienne Helis Malvin Medical Research Foundations
  9. Div Of Chem, Bioeng, Env, & Transp Sys
  10. Directorate For Engineering [1724640] Funding Source: National Science Foundation

Ask authors/readers for more resources

Congenital heart defects are the most common birth defect. The limiting factor in tissue engineering repair strategies is an autologous source of functional cardiomyocytes. Amniotic fluid contains an ideal cell source for prenatal harvest and use in correction of congenital heart defects. This study aims to investigate the potential of amniotic fluid-derived stem cells (AFSC) to undergo non-viral reprogramming into induced pluripotent stem cells (iPSC) followed by growth-factor-free differentiation into functional cardiomyocytes. AFSC from human second trimester amniotic fluid were transfected by non-viral vesicle fusion with modified mRNA of OCT4, KLF4, SOX2, LIN28, cMYC and nuclear GFP over 18 days, then differentiated using inhibitors of GSK3 followed 48 hours later by inhibition of WNT. AFSC-derived iPSC had high expression of OCT4, NANOG, TRA-1-60, and TRA-1-81 after 18 days of mRNA transfection and formed teratomas containing mesodermal, ectodermal, and endodermal germ layers in immunodeficient mice. By Day 30 of cardiomyocyte differentiation, cells contracted spontaneously, expressed connexin 43 and beta-myosin heavy chain organized in sarcomeric banding patterns, expressed cardiac troponin T and beta-myosin heavy chain, showed upregulation of NKX2.5, ISL-1 and cardiac troponin T with downregulation of POU5F1, and displayed calcium and voltage transients similar to those in developing cardiomyocytes. These results demonstrate that cells from human amniotic fluid can be differentiated through a pluripotent state into functional cardiomyocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available