4.3 Article

Applying systems biology tools to study n-butanol degradation in Pseudomonas putida KT2440

Journal

ENGINEERING IN LIFE SCIENCES
Volume 15, Issue 8, Pages 760-771

Publisher

WILEY
DOI: 10.1002/elsc.201400051

Keywords

Biofuels; Butanol; Chemostat culture; Omics; Stress response

Funding

  1. German Federal Ministry of Education and Research (BMBF) [FKZ: 0315406]
  2. BASF SE

Ask authors/readers for more resources

To smoothen the process of n-butanol formation in Pseudomonas putida KT2440, detailed knowledge of the impact of this organic solvent on cell physiology and regulation is of outmost importance. Here, we conducted a detailed systems biology study to elucidate cellular responses at the metabolic, proteomic, and transcriptional level. Pseudomonas putida KT2440 was cultivated in multiple chemostat fermentations using n-butanol either as sole carbon source or together with glucose. Pseudomonas putida KT2440 revealed maximum growth rates (mu) of 0.3 h(-1) with n-butanol as sole carbon source and of 0.4 h(-1) using equal C-molar amounts of glucose and n-butanol. While C-mole specific substrate consumption and biomass/substrate yields appeared equal at these growth conditions, the cellular physiology was found to be substantially different: adenylate energy charge levels of 0.85 were found when n-butanol served as sole carbon source (similar to glucose as sole carbon source), but were reduced to 0.4 when n-butanol was coconsumed at stable growth conditions. Furthermore, characteristic maintenance parameters changed with increasing n-butanol consumption. C-13 flux analysis revealed that central metabolism was split into a glucose-fueled Entner-Doudoroff/pentose-phosphate pathway and an n-butanol-fueled tricarboxylic acid cycle when both substrates were coconsumed. With the help of transcriptome and proteome analysis, the degradation pathway of n-butanol could be unraveled, thus representing an important basis for rendering P. putida KT2440 from an n-butanol consumer to a producer in future metabolic engineering studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available