4.3 Review

A review of radiative detachment studies in tokamak advanced magnetic divertor configurations

Journal

PLASMA PHYSICS AND CONTROLLED FUSION
Volume 59, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6587/aa6959

Keywords

tokamak; divertor; detachment; snowflake divertor; advanced divertor

Funding

  1. US Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344]

Ask authors/readers for more resources

The present vision for a plasma-material interface in the tokamak is an axisymmetric poloidal magnetic X-point divertor. Four tasks are accomplished by the standard poloidal X-point divertor: plasma power exhaust; particle control (D/T and He pumping); reduction of impurity production (source); and impurity screening by the divertor scrape-off layer. A low-temperature, low heat flux divertor operating regime called radiative detachment is viewed as the main option that addresses these tasks for present and future tokamaks. Advanced magnetic divertor configuration has the capability to modify divertor parallel and cross-field transport, radiative and dissipative losses, and detachment front stability. Advanced magnetic divertor configurations are divided into four categories based on their salient qualitative features: (1) multiple standard X-point divertors; (2) divertors with higher order nulls; (3) divertors with multiple X-points; and (4) long poloidal leg divertors (and also with multiple X-points). This paper reviews experiments and modeling in the area of radiative detachment in the advanced magnetic divertor configurations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available