4.3 Article

Collisionality scaling of the electron heat flux in ETG turbulence

Journal

PLASMA PHYSICS AND CONTROLLED FUSION
Volume 59, Issue 5, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6587/aa5f75

Keywords

magnetic confinement fusion; gyrokinetics; turbulent transport; plasma collisionality; electron-gyroradius scales; zonal modes

Funding

  1. EPSRC [EP/M022463/1, EP/L000237/1, EP/I501045/1, EP/H002081/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/H002081/1, EP/L000237/1, EP/M022463/1, EP/I501045/1] Funding Source: researchfish

Ask authors/readers for more resources

In electrostatic simulations of MAST plasma at electron-gyroradius scales, using the local fluxtube gyrokinetic code GS2 with adiabatic ions, we find that the long-time saturated electron heat flux (the level most relevant to energy transport) decreases as the electron collisionality decreases. At early simulation times, the heat flux 'quasi-saturates' without any strong dependence on collisionality, and with the turbulence dominated by streamer-like radially elongated structures. However, the zonal fluctuation component continues to grow slowly until much later times, eventually leading to a new saturated state dominated by zonal modes and with the heat flux proportional to the collision rate, in approximate agreement with the experimentally observed collisionality scaling of the energy confinement in MAST. We outline an explanation of this effect based on a model of ETG turbulence dominated by zonal-nonzonal interactions and on an analytically derived scaling of the zonal-mode damping rate with the electron-ion collisionality. Improved energy confinement with decreasing collisionality is favourable towards the performance of future, hotter devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available