4.7 Article

Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum

Journal

PLANTA
Volume 246, Issue 2, Pages 323-335

Publisher

SPRINGER
DOI: 10.1007/s00425-017-2682-z

Keywords

Anthocyanidin reductase; Condensed tannins; Leucoanthocyanidin reductase; Transparent testa

Categories

Funding

  1. Grasslanz Technology Limited, Palmerston North, New Zealand

Ask authors/readers for more resources

Main conclusion Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops. Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals. The previous studies have suggested that PAs present in cotton are a major contributor to fiber color. However, the biosynthesis of PAs in cotton still remains to be elucidated. AtTT2 (transparent testa 2) is a MYB family transcription factor from Arabidopsis that initiates the biosynthesis of PAs by inducing the expression of multiple genes in the pathway. In this study, we isolated two R2R3-type MYB transcription factors from Gossypium hirsutum that are homologous to AtTT2. Expression analysis showed that both genes were expressed at different levels in various cotton tissues, including leaf, seed coat, and fiber. Protoplast transactivation assays revealed that these two GhMYBs were able to activate promoters of genes encoding enzymes in the PA biosynthesis pathway, namely anthocyanidin reductase and leucoanthocyanidin reductase. Complementation experiments showed that both of the GhMYBs were able to recover the transparent testa seed coat phenotype of the Arabidopsis tt2 mutant by restoring PA biosynthesis. Ectopic expression of either of the two GhMYBs in Medicago truncatula hairy roots increased the contents of anthocyanins and PAs compared to control lines expressing the GUS gene, and expression levels of MtDFR, MtLAR, and MtANR were also elevated in lines expressing GhMYBs. Together, these data provide new insights into engineering condensed tannins in cotton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available