4.7 Article

Cu from dissolution of CuO nanoparticles signals changes in root morphology

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 110, Issue -, Pages 108-117

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.08.005

Keywords

CuO nanoparticles; Wheat; Root morphology; Root hairs; Indole acetic acid

Categories

Funding

  1. NIFA [10867118]
  2. Utah Experiment Station

Ask authors/readers for more resources

Utilization of CuO nanoparticles (NPs) in agriculture, as fertilizers or pesticides, requires understanding of their impact on plant metabolism. Inhibition of root elongation by CuO NPs (>10 mg Cu/kg) occurred in wheat grown in sand. Morphological changes included root hair proliferation and shortening of the zones of division and elongation. The epidermal cells in the compressed root tip were abnormal in shape and file patterning but staining with SYTOX Blue did not reveal a general increase in epidermal cell death. Inhibition of root elongation and proliferation of root hair formation occurred also in response to exogenous indole acetic acid (IAA) supplied through tryptophan metabolism by the root-colonizing bacterium, Pseudomonas chlororaphis O6. Altered root morphology caused by the CuO NPs was likely due to release of Cu from dissolution at the root surface because similar changes occurred with Cu ions (>= 6 mg/kg). Use of a fluorescent probe showed the accumulation of nitric oxide (NO), required for root hair formation, was not changed by the NPs. These findings suggested that dissolution of the NPs in the rhizosphere resulted levels of Cu that modified IAA distribution to causing root shortening but permitted NO cell signaling to promote root hair proliferation. (C) 2016 Published by Elsevier Masson SAS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available