4.8 Article

Phospholipase C2 Affects MAMP-Triggered Immunity by Modulating ROS Production

Journal

PLANT PHYSIOLOGY
Volume 175, Issue 2, Pages 970-981

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.17.00173

Keywords

-

Categories

Funding

  1. UNMdP, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP 1142010010 0219]
  2. Agencia Nacional de Promocion Cientifica y Tecnologica (PICT) [574, 2117, 1621, 3255]
  3. EMBO Short Term Fellowship [ASTF 477]
  4. Carl Trygger Foundation
  5. Gatsby Charitable Foundation
  6. European Research Council (PHOSPHinnATE)
  7. Netherlands Organization for Scientific Research [867.15.020]
  8. Biotechnology and Biological Sciences Research Council [BBS/E/J/000PR9796] Funding Source: researchfish
  9. BBSRC [BBS/E/J/000PR9796] Funding Source: UKRI

Ask authors/readers for more resources

The activation of phosphoinositide-specific phospholipase C (PI-PLC) is one of the earliest responses triggered by the recognition of several microbe-associated molecular patterns (MAMPs) in plants. The Arabidopsis (Arabidopsis thaliana) PI-PLC gene family is composed of nine members. Previous studies suggested a role for PLC2 in MAMP-triggered immunity, as it is rapidly phosphorylated in vivo upon treatment with the bacterial MAMP flg22. Here, we analyzed the role of PLC2 in plant immunity using an artificial microRNA to silence PLC2 expression in Arabidopsis. We found that PLC2-silenced plants are more susceptible to the type III secretion system-deficient bacterial strain Pseudomonas syringae pv tomato (Pst) DC3000 hrcC2 and to the nonadapted pea (Pisum sativum) powdery mildew Erysiphe pisi. However, PLC2-silenced plants display normal susceptibility to virulent (Pst DC3000) and avirulent (Pst DC3000 AvrRPM1) P. syringae strains, conserving typical hypersensitive response features. In response to flg22, PLC2-silenced plants maintain wild-type mitogen-activated protein kinase activation and PHI1, WRKY33, and FRK1 immune marker gene expression but have reduced reactive oxygen species (ROS)-dependent responses such as callose deposition and stomatal closure. Accordingly, the generation of ROS upon flg22 treatment is compromised in the PLC2-defficient plants, suggesting an effect of PLC2 in a branch of MAMP-triggered immunity and nonhost resistance that involves early ROS-regulated processes. Consistently, PLC2 associates with the NADPH oxidase RBOHD, suggesting its potential regulation by PLC2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available