4.7 Article

Mapping and comparative proteomic analysis of the starch biosynthetic pathway in rice by 2D PAGE/MS

Journal

PLANT MOLECULAR BIOLOGY
Volume 95, Issue 4-5, Pages 333-343

Publisher

SPRINGER
DOI: 10.1007/s11103-017-0652-2

Keywords

Comparative proteomics; Rice; Endosperm; 2-DE; Starch biosynthesis

Funding

  1. Ministry of Science and Technology, R.O.C [MOST-102-2113-M-005-001-MY3]

Ask authors/readers for more resources

In human diets, rice (Oryza sativa L.) is an important source of starch, a substantial amount of which is accumulated in developing endosperm. A better understanding of the complicated pathways involved in starch biosynthesis is needed to improve the yield and quality of rice and other cereal crops through breeding. One pure line rice mutant, SA0419, was induced from a wild-type rice, TNG67, by sodium azide mutagenesis; therefore, TNG67 and SA0419 share the same genetic background. SA0419 is, however, a unique glutinous rice with a lower amylose content (8%) than that of TNG67 (20%), and the grains of SA0419 develop earlier and faster than those of TNG67. In this study, we used a comparative proteomic analysis to identify the differentially expressed proteins that may explain the differences in starch biosynthesis and the characteristics of TNG67 and SA0419. A gel-based proteomic approach was applied to profile the expressed proteome in the developing endosperm of these two rice varieties by nano-LC/MS/MS. Several over-expressed proteins were found in SA0419, such as plastidial ADP-glucose pyrophosphorylase (AGPase), phosphoglucomutase (PGM), pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP), 6-phosphofructokinase (PFK), pyruvate phosphate dikinase (PPDK), starch branching enzymes (SBE) and starch debranching enzyme (SDBE), with those proteins mainly being involved in the pathways of starch metabolism and PPDK-mediated gluconeogenesis. Those over-expressed enzymes may contribute to the relatively early development, similar starch accumulation and rapid grain filling of SA0419 as compared with TNG67. This study provides a detailed biochemical description of starch biosynthesis and related information regarding a unique starch mutant that may assist future research efforts to improve the yield and quality of grain and starch in rice through breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available