4.8 Article

Plant Actin-Depolymerizing Factors Possess Opposing Biochemical Properties Arising from Key Amino Acid Changes throughout Evolution

Journal

PLANT CELL
Volume 29, Issue 2, Pages 395-408

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.16.00690

Keywords

-

Funding

  1. National Basic Research Program [2014CB954203]
  2. National Natural Science Foundation of China [31670180, 31470283, 31270326]
  3. Fundamental Research Funds for the Central Universities [lzujbky-2014-k08, lzujbky-2014-bt05, lzujbky-2016-bt05, lzujbky-2016-220]

Ask authors/readers for more resources

Functional divergence in paralogs is an important genetic source of evolutionary innovation. Actin-depolymerizing factors (ADFs) are among the most important actin binding proteins and are involved in generating and remodeling actin cytoskeletal architecture via their conserved F-actin severing or depolymerizing activity. In plants, ADFs coevolved with actin, but their biochemical properties are diverse. Unfortunately, the biochemical function of most plant ADFs and the potential mechanisms of their functional divergence remain unclear. Here, in vitro biochemical analyses demonstrated that all 11 ADF genes in Arabidopsis thaliana exhibit opposing biochemical properties. Subclass III ADFs evolved F-actin bundling (B-type) function from conserved F-actin depolymerizing (D-type) function, and subclass I ADFs have enhanced D-type function. By tracking historical mutation sites on ancestral proteins, several fundamental amino acid residues affecting the biochemical functions of these proteins were identified in Arabidopsis and various plants, suggesting that the biochemical divergence of ADFs has been conserved during the evolution of angiosperm plants. Importantly, N-terminal extensions on subclass III ADFs that arose from intron-sliding events are indispensable for the alteration of D-type to B-type function. We conclude that the evolution of these N-terminal extensions and several conserved mutations produced the diverse biochemical functions of plant ADFs from a putative ancestor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available